

Domain-Specific Languages for Embedded
Systems Portable Software Development

Vera Ivanova, Boris Sedov, Yuriy Sheynin, Alexey Syschikov
Saint Petersburg State University of Aerospace Instrumentation

Saint Petersburg, Russia
{vera.ivanova, boris.sedov, sheynin, alexey.syschikov}@guap.ru

Abstract—In this paper we present a new method of

Domain Specific Language development for a portable
software development for embedded systems. Domain Specific
Languages allow to involve domain experts apart with
programmers in embedded software development. We
propose a visual programming approach and methods for
coarse-grained programming. In a combination with a method
for domain specific languages development it allows rapid
building of an infrastructure for selected domains
programming. Coarse-grained approach provides abilities for
easy targeting of developed program to various target
platforms and configurations.

I. INTRODUCTION
Modern fast-growing market of embedded systems offers

a large number of embedded hardware solutions. Writing
code personally for each embedded solution is very tricky.

Embedded systems can cope with rather wide area of
problems, and the number of these areas only grows.
Description of the solution issue becomes more and more
important.

Implementation of some programming algorithm can be
done in two ways – by using general approach and general-
purpose tools or by using specialized tools and instruments.

General approaches and tools are oriented on a wide
range of problems (often – for a class of problems). Usually
they are not optimized for each particular problem,
especially when the problem is non-trivial and has a lot of
individual aspects. Specialized tools and instruments are
oriented on a specific area and provide solutions only for
this area. They are optimal and effective for solving this
kind of problems.

Domain-specific language (DSL) is a programming or
modeling language designed for a particular domain area.
Unlike general-purpose languages, DSLs are more
expressive, easier to use and more understandable to the
different user categories. DSL allows operating with terms
of their domain.

There are a lot of approaches to create new programming
languages, but they are more suited for general-purpose

languages. This article reviews approaches and methods of
domain-specific language design and proposes a new
method for DSL development.

A number of proposed hardware for embedded systems
market and necessity to take maximum characteristics from
this hardware generates highly specialized professionals,
which have deep understanding of development process for
a particular hardware platform. As a result the specialization
becomes narrower. To create an effective solution for
embedded system we need two specialists, first – domain
specialist, second – programming specialist, who could
create effective realization of domain specialist’s solution on
a hardware platform. One should take into account that
prospective embedded platforms are multicore processors
and manycore heterogeneous SoCs. Thus a DSL should
support parallel programming for such platforms, with a
selection of application algorithms, adaptation and tuning in
respect to the platform features and characteristics.

There is a need in a technology and design tools of
portable software development for embedded systems, an
environment, where domain expert could describe solution
for a task, and program specialist, who could implement this
solution on a particular hardware platform. For this the DSL
development method with minimal efforts is needed.

II. STATE OF ART
The continued miniaturization of computing devices has

contributed to making embedded systems a wide variety of
diverse computational requirements [1]. Regardless of the
device, be it mobile phones, vehicle equipment, medical
instruments, or smart home components, all of these systems
embody very stringent requirements in terms of reliability,
maintainability, availability, safety, security, efficiency,
energy consumption, among others. Overall, the diversity of
embedded systems and requirements pose tremendous
challenges to the development and robustness of their
software applications. In particular, this software must
operate within acceptable performance parameters in
resource-constrained environments while being subject to
changing operating conditions (e.g., temporary
unavailability of sensors, decreasing battery level, real-time

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

requirements, memory limitations, intermittent
connectivity).

Development of embedded systems in research and
industry is more and more shifting from code based
development to model driven development [2] (MDD)
approaches, which are founded on high-level modeling
languages. Modeling languages are not as generic as general
purpose programming languages, they provide more
specialized language constructs, e.g. for the creation of data
flow based systems (e.g. Simulink [3]) or for the creation of
system models (e.g. SysML [4]). These MDD approaches
are supported by industrial strength tool chains; prominent
examples of MDD tools that are applied in both research
and industry are Simulink, ASCET [5], SCADE[6],
Rhapsody[7], Artisan[8], and MagicDraw [9]. MDD tools
implement modeling languages, provide infrastructure
support, e.g. tailored editors and code generators, and
include runtime libraries and frameworks that support
execution of generated code.

There is a major challenge for the development of
embedded systems: generic and domain specific modeling
languages are limited and support some aspects of
embedded system development only. Simulink, for example,
supports definition of data flow based behavior only, UML
[10] based languages support the definition of software
architecture and control flow, and SysML supports the
definition of system architectures. Graphical editors, code
generators, and language frameworks only support one or a
limited set of modeling languages. Detailed modeling of all
aspects of complex embedded systems therefore requires the
combination of models defined in multiple modeling
languages and tool chains to provide one holistic system
model. Code generation needs to be done with multiple
independent generators in this case. This yields the situation
that developers need to combine multiple generated artifacts
and runtime libraries, and need to connect required inputs
and provided outputs of models, which may even implement
different semantics. One common execution model is
required that supports all relevant modeling languages. This
non-trivial task currently limits the applicability of DSL
approaches in development of complex software systems,
since the effort required for integrating modeling languages
may outweigh the additional benefits of modeling languages

III. OVERVIEW OF DSL DEVELOPMENT METHODS
DSL development consists of following phases: decision

about necessity of a new DSL, domain analysis, language
design, implementation and deployment [11]. In fact, the
development of a domain-specific language is not a simple
sequential process. Decision phase can be influenced by
preliminary analysis, which can also weigh with design part,
and design can be affected by implementation
considerations. Each phase is associated with a set of

patterns, except for deployment phase, which is left behind
the scope of this article.

Development process also can be separated in two parts:
“when should you develop DSL” and “how should you
develop DSL” (Fig. 1).

Fig. 1. DSL development phases

Decision phase corresponds to the “when” part, other
phases correspond to the “how” part.

Decision patterns represent the set of situations when it’s
rational to use DSL. It is obvious, that application of
existing DSL is less expensive and requires less experience,
than developing a new one.

In the analysis phase of DSL development the problem
domain is identified and domain knowledge is collected.
Sources are technical documents, domain experts’
knowledge, legacy code in GPL, user feedback and so on.

DSL design approaches can be considered from two
points of view: the relationship between the DSL and
existing languages, and the formal nature of the design
description.

From the first point of view there are two ways to design
DSL – inventing a whole new language or using some
existing language as a base. Inventing a new language can
be complicated and expensive. That’s why preference is
usually given to the second approach. Second approach, in
turn, is divided into three patterns [12].

1) Piggyback. Base language constructions are
supplemented by new DSL constructions, and then it’s
compiled (translated) into host language code (not into
native code). In the same time host constructions stay
unchanged, but DSL instructions are transformed to base
language instruction. Typical examples of this approach are
the yacc [13] and lex [14] processors. While the
specifications of the input grammar (in the case of yacc) and
the input strings (in the case of lex) are expressed in a DSL,
the resulting actions for recognized grammar rules and
tokens are specified in C which is also the processors’
output language. Yacc uses the piggyback approach more
aggressively as it introduces special variables (denoted by
the $ sign) to the C constructs used for specifying the
actions.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 25

2) Language Specialization. Some instructions which
impede an adaptation to the particular domain are removed
from host language. In some cases the full power of an
existing language may prevent its adoption for a specialized
purpose. A representative case arises when requirements
related to the safety or security aspects of a system can be
satisfied only be removing some “unsafe” aspects (such as
dynamic memory allocation, unbounded pointers, or
threads) from a language. In such cases a DSL may be
designed and implemented as a subset of an existing
language. Examples of DSLs designed following the
specialization pattern are Javalight [15] which is a type-safe
subset of Java, the educational subsets of Pascal used for a
stepwise introduction to the language [16], the HTML
application of SGML [17], and the automotive “safer-
subset” of C [18].

3) Language Extension. This pattern is used to add new
features to an existing language. Often an existing language
can effectively serve a new need with the addition of a few
new features to its core functionality. In this case, a DSL can
be designed and implemented as an extension of the base
language. The language extension pattern differs from the
piggyback pattern by the roles played by the two languages:
the piggyback pattern uses an existing language as an
implementation vehicle for a DSL, whereas the extension
pattern is used when an existing language is extended within
its syntactic and semantic framework to form a DSL. One of
the earliest examples of this pattern is the “rational
FORTRAN”' (Ratfor) compiler [19] which provided a
structured version of FORTRAN. The implementation of the
original C++ compiler (cfront) [20] also used this technique.

From the second point of view DSL designer must
choose how to specify the design before implementation - in
formal or informal way. In an informal design the
specification is usually in some form of natural language,
probably including a set of illustrative DSL programs. A
formal design consists of a specification written using one of
the available semantic definition methods [21]. The most
widely used formal notation include regular expressions and
grammars for syntax specifications, and attribute grammars,
rewrite systems and abstract state machines for semantic
specification.

Clearly, an informal approach is likely to be easiest for
most people. However, a formal approach should not be
discounted. Development of a formal description of both
syntax and semantics can bring problems to light before the
DSL is actually implemented. Furthermore, formal designs
can be implemented automatically by language development
systems and tools, thereby significantly reducing the
implementation effort.

After completing DSL design one should choose suitable
implementation. It is difficult due to common approaches to
GPL implementation are not applicable to DSLs. Patterns

for DSL are not widely known, but some of them are
presented below [22].

4) Interpreter. DSL constructs are recognized and
interpreted by standard “fetch-decode-executed” cycle. This
approach is convenient for languages having a dynamic
character or if executing speed is not important. The
advantages of interpretation over compilation are easier
extension and greater simplicity.

5) Compiler/application generator. DSL constructs are
translated to base language constructs and library calls. A
complete static analysis can be done on the DSL
program/specification. DSL compilers are often called
application generators.

6) Preprocessor. DSL constructs are translated to
constructs of an existing language. Static analysis restricted
to abilities of base language processor. Important sub-
patterns:

• Macro-processing: extension of macro-definitions
into plain code.

• Source-to-source transformation: The DSL source
code is transformed via a suitable shallow or deep
translation process into the source code of an existing
language. The tools available for the existing
language are then used to host - compile or interpret -
the code generated by the transformation process.

• Pipeline: In cases where a number of DSLs are
needed to express the intended operations, their
composition can be designed and implemented using
a pipeline. Typically, all DSLs are organized as a
series of communicating elements. Each DSL handles
its own language elements and passes the rest down to
the others. Sometimes, the output of one DSL can be
expressed in terms of the input expected by another
DSL further down the pipeline chain.

• Lexical processing: Many DSLs can be designed in a
form suitable for processing by techniques of simple
lexical substitution; without tree-based syntax
analysis. The design of the DSL is geared towards
lexical translation by utilizing a notation based on
lexical hints such as the specification of language
elements (e.g. variables) using special prefix or suffix
characters. The form of input for this family of DSLs
is often line-oriented, rather than free form and
delimited by character tokens.

7) Embedding. DSL is implemented by extending an
existing GPL (the host language) by defining specific
abstract data types and operators. A domain-specific
problem can then be de-scribed with these new constructs.
Therefore, the new language has all the power of the host
language, but an application engineer can become a
programmer without learning too much of it. To
approximate domain-specific notations as closely as

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 26

possible, the embedding approach can use any features for
user-definable operator syntax the host language has to
offer. Application libraries are the basic form of embedding.

8) Extensible compiler/interpreter. A GPL
compiler/interpreter is extended with domain-specific
optimization rules and/or domain-specific code generation.
While interpreters are usually relatively easy to extend,
extending compilers is hard unless they were designed with
extension in mind.

IV. THE PROPOSED DSL DEVELOPMENT METHOD

A. Description
After we had analyzed all described above methods, we

developed our own. Remembering that development of DSL
from scratch is more complicated, than development of
DSL, which is based on existing language; we decided to
take general-purpose visual language, which could be used
by domain experts to create their own new DSLs with
minimal efforts, as a base. In the implementation of these
languages programmers take place by using applications
generation approach (compiler/application generator).

B. Advantages of a visual approach
Visual representation of computation load requires

adequate approaches, considering a multitasking nature of a
typical set of computational (informational,
communicational, interface) tasks of a particular domain.
The analysis of successful existing approaches proves the
expediency of using visual programming for designing a
high-level algorithmic description of a computation load as
a system of communicating processes. It makes native
algorithms and tasks parallelism representation easy and
natural.

Despite of constant advancing of high-level languages,
programming usability issues and work speed issues remain
rather relevant today. It can explain popularity and a wide
distribution of graphic visual programming. It provides
maximal level of abstraction allowing users to work more
efficiently, especially when multitasking software package
is designed in terms of algorithms and flow-charts.

C. Intuitive use of a graphic
As most people, engineers and scientists solve their tasks

by operating with images and symbols of a problem domain.
Such an approach has been developed in the process of
education and application of the relevant data processing
tools, such as charts and diagrams. However, most
programming languages require the study of specific syntax
and adaptation of a domain model to language features. At
the same time graphic language allows to work with the
intuitive structures.

Graphic language code is usually more suitable for
engineers and scientists, because they usually work with a
visual data; process modeling by flow-charts and state

diagrams which also show the data flows. Besides, stream
programming calls for a work in terms of problem domain.
For example, a typical application written in graphic
language firstly receives data from the several temperature
sensors, then passes this data to analysis function, and then,
finally, stores the computed data (Fig. 2.) Graphic
representation of this program is clearly defines execution
order of operations and data flows.

 Fig 2. Typical application written in graphic language

Graphic language conception is easy to understand, so the
tools of development environment can be made just as
suitable and intuitive. For example, debugging tools can
visualize the process of data distribution through the
channels, and also display the appropriate values on inputs
and outputs of program code nodes (what is meant here is an
interactive background of the execution).

Debugging tools allow setting breakpoints in many parts
of program simultaneously, pausing the execution and
entering the procedure. Many development environments
for textual languages have a similar functional, but graphic
language environment can display current state of the
program and relations between parallel code sections in a
more convenient form due to graphic core of this language.

D. Natural parallelism
Unlike sequential execution languages such as C and

C++, graphic languages initially contain information about
code sections which can and cannot be executed in parallel
(Fig. 3). It allows exploiting the architectural advantages
and simplifies the task of flow creation and control for
domain specialist.

Fig 3. Natural parallelism on visual language

A distinct advantage of graphic languages compared to
the usual textual languages is that multithreaded applications
implementation becomes a simpler task. Graphic language

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 27

compiler can independently determine code sections having
parallel blocks and organize separate threads for their
parallel execution. In computer terminology such
mechanism is called an “implicit parallelism”, i.e. the
parallel implementation is performed by development tools
on the basis of program approach’s features, not by a
specially written parallel program code.

E. Automated pipelining
Due to own structure, graphic language code could be

naturally pipelined during the runtime. Understanding of
this fact allows the developer to identify potential stages of
the pipeline. The process of distributing the program among
blocks (future pipeline stages) is clear and obvious due to
block structure of a graphic language (Fig. 4).

Fig 4. Automated pipelining on visual language

The developer is able to influence the stage length and
distribution among pipeline stages by changing the
granularity level of a visual code or by redistribution of
blocks, which eventually allows making maximum use of
target platform features.

F. An integration of graphic and textual languages
Despite the fact that graphic languages are well-suited for

the organization of a code parallelization, and they hide the
nuances of memory management, they are not always
suitable for solving some problems. In particular,
mathematic formulas and equations can be represented more
vividly in a textual form, that’s why graphic language unit
can have several representation levels: external and internal
(Fig. 5).

Fig 5. Representation of graphic language unit

External representation points out that this element
describes, for example, mathematic formula; internal
representation captures the essence of unit – a textual
formula.

G. Granularity
Graphic language concept implies the following scheme

of program development. Design starts with a coarse-
grained scheme. Problem originator collects all the coarse
stages needed for the problem solution into a single scheme.
Then every block is detailed. Problem originator achieves
such level of granularity when every block gets a small
amount of an input data and processes them in a relatively
simple manner. Also target platform significantly affects the
choice of granularity level. This approach allows making
every block autonomous in a sense that its implementation
doesn’t need to take into account all relations in the
program. One only needs to implement a restricted number
of operations under a particular input data. Due to such
localization, problem originator can pass the blocks to
programmer, who will implement them with a visual
parallel language, textual language, or with their
combination. After blocks implementation the developer
gets a working program.

Such approach has many advantages. Firstly, the program
becomes for suitable for further changing and maintenance.
Due to block structure, the developer has an opportunity to
rearrange blocks without losing their working capacity. It
considerably increases design flexibility. Secondly, the
smaller is granularity, the greater is possibility of a potential
program parallelization during the runtime.

H. Our method of DSL development
We propose VPL (Visual Programming Language)

[23,24] as a base for development of new domain-specific
languages. This language is based upon AGP-model (a
model of Asynchronous Growing Processes) [25,26].

Basic elements of VPL have rather low level of
abstraction, but one can describe coarse-grained and
medium-grained elements by means of hierarchical program
structuring tools built in the language (Fig. 6). This is how
the procedures of particular domain are transformed into
functional blocks making up final program.

A set of functional blocks representing the most
frequently used domain functions and a set of basic
elements will make up a new DSL by using language
extension pattern. The elements of the base language can be
either hidden or visible, depending on the domain
characteristics.

A realization of a new domain-specific language requires
no additional efforts since the new semantic elements can be
produced in two ways.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 28

Fig 6. Low level description of library node

Firstly, elements are composed of basic language units
and transformed from VPL to an internal representation by
general rules. Then the internal representation will go to the
input of different compilers, which produce the target
platform code. Thus, domain-specific languages that were
constructed on the base of VPL will be implemented by
means of application generators.

Second, elements refer to some function written in
general-purpose language. So this function is assigned to a
particular element by special rules. This reference is saved
during transformation to the internal representation.
Function code will be inserted instead of generated code
during internal representation transformation to target
platform code.

In this case one of the main requirements to DSL is
observed: domain experts don’t have to care about
functional blocks implementation. This implementation is
created by programmers in the target platform language.
There can be several implementations and switching
between them doesn’t require much effort both from expert
and programmer.

V. CONCLUSION
The proposed method is based on using visual

programing language VPL as a base for developing of new
domain-specific languages. In this method new DSLs are
developed by using language extension. Thus DSLs allow

domain specialist and programmer work simultaneously and
independently on the same scheme.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation under agreement n°14.575.21.0021.

REFERENCES

[1] T. Kuhn et al., "Multi-Language Development of Embedded
Systems", in Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling (DSM '09), M. Rossi et al., Eds.,
pp. 21-27.

[2] G. Trombetti, A. Gokhale, D. C. Schmidt, J. Hatcliff, G. Singh, J.
Greenwald “A Integrated Model-driven Development
Environment for Composing and Validating Distributed Real-
time and Embedded Systems,” in Model Driven Software
Development- Volume II of Research and Practice in Software
Engineering , S. Beydeda, M. Book, and V. Gruhn, Eds. New
York: Springer-Verlag, 2005.

[3] Pieter J. Mosterman. MATLAB and Simulink for Embedded
Systems Design. The MathWorks, Inc. 2007

[4] Rosenberg D., Mancarella S. Embedded system development
using SysML. OMG: Systems Modeling Language 2010.

[5] ETAS - ASCET Software Products -
http://www.etas.com/en/products/ascet_software_products.php

[6] Esterel Technologies SCADE Suite. The Standard for the
Development of Safety-Critical Embedded Software in Aerospace
& Defense, Rail Transportation, Energy and Heavy Equipment
Industries. // Esterel Technologies - Critical Systems and
Software Development Solutions. — http://www.esterel-
technologies.com/products/scade-suite.

[7] Rational Rhapsody Architect for Software - http://www-
03.ibm.com/software/products/ru/ratirhaparchforsoft

[8] Artisan Software Tools Inc.
http://www.atego.com/products/technology-overview/

[9] MagicDraw - No Magic, Inc
http://www.nomagic.com/products/magicdraw.html

[10] Chen R., Sgroi M., Lavagno L., Martin G., Sangiovanni-
Vincentelli A., Rabaey J. Embedded System Design Using UML
and Platforms. In Forum on Speci�cation & Design Languages,
Marseille, France, September 2002.

[11] Marjan Mernik, Jan Heering, Anthony M. Sloane: When and how
to develop domain-specific languages. ACM Comput. Surv. 37(4):
316-344 (2005).

[12] Diomidis Spinellis. Notable design patterns for domain specific
languages. Journal of Systems and Software, 56(1):91–99,
February 2001

[13] Stephen C. Johnson. Yacc - yet another compiler-compiler.
Computer Science Technical Report 32, Bell Laboratories,
Murray Hill, NJ, USA, July 1975.

[14] Michael E. Lesk. Lex - a lexical analyzer generator. Computer
Science Technical Report 39, Bell Laboratories, Murray Hill, NJ,
USA, October 1975.

[15] Tobias Nipkow and David von Oheimb. Javalight is type-safe-
definitely. In Conference Record of POPL '98: The 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 161-170, San Diego, California, 1998.

[16] Walter Savitch. Pascal - An Introduction to the Art and Science of
Programming. Benjamin/Cummings Pub. Co., Inc., fourth
edition, 1995.

[17] International Organization for Standardization, Geneva,
Switzerland. Information processing - Text and office systems -
Standard Generalized Markup Language (SGML), 1986. ISO
8879:1986.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 29

[18] P. D. Edwards and R. S. Rivett. Towards an automotive `safer
subset' of C. In Peter Daniel, editor, 16th International
Conference on Computer Safety, Reliability and Security:
SAFECOMP '97, pages 185-195, York, UK, September 1997.
European Workshop on Industrial Computer Systems: TC-7,
Springer Verlag.

[19] Brian W. Kernighan. Ratfor - a preprocessor for a rational
Fortran. Software: Pract. & Exp., 5(4):395-406, 1975.

[20] James M. Stichnoth and Thomas Gross. Code composition as an
implementation language for compilers. P.119-132.

[21] Slonneger,K. Kurtz, B. L. Formal Syntax and Semantics of
Programming Languages: A Laboratory Based Approach.
Addison-Wesley. 1995.

[22] Kamin, S. 1998. Research on domain-specific embedded
languages and program generators. Electro. Notes Theor.
Comput. Sci. 14 . http://www.sciencedirect.com/.

[23] Sheynin Yuriy E., Syschikov Alexey Y. Enabling graphical
notation for parallel programming : 2009/0064115 A1. — United
States, March 5, 2009

[24] Sheynin Yuriy E., Syschikov Alexey Y. Parallel programming
language for coarse-grained dynamic computations // In
Proceeding of the 3rd International Conference “Parallel
computations and control tasks” – Moscow, 2006.

[25] Sheynin Yuriy E. Asynchronious Growing Processes – a formal
model of a parallel computations in distributed computing
structures // Distrubuted data processing. In Proceedings of the
International Conference ROI-98 – Novosibirsk, 1998 – p. 111-
115.

[26] Sheynin Yuriy E. A formal model of dynamic parallel
computations in parallel computation systems for experimental
data processing // Scientific Instrumentation – 1999 – v. 9, 2 – p.
22-29.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 30

