
Visual Development Environment for OpenVX

Alexey Syschikov, Boris Sedov, Konstantin Nedovodeev, Sergey Pakharev
Saint Petersburg State University of Aerospace Instrumentation

Saint Petersburg, Russia
{alexey.syschikov, boris.sedov, konstantin.nedovodeev, sergey.pakharev}@guap.ru

Abstract—OpenVX standard has appeared as an answer
from the computer vision community to the challenge of
accelerating vision applications on embedded heterogeneous
platforms. It is designed as a low-level programming framework
that enables software developers to leverage the computer vision
hardware potential with functional and performance portability.
In this paper, we present the visual environment for OpenVX
programs development. To the best of our knowledge, this is the
first time the graphical notation is used for OpenVX
programming. Our environment addresses the need to design
OpenVX graphs in a natural visual form with automatic
generation of a full-fledged program, saving the programmer
from writing a bunch of a boilerplate code. Using the VIPE visual
IDE to develop OpenVX programs also makes it possible to work
with our performance analysis tools. All the benefits gained from
using the visual IDE are illustrated by the feature tracker
example.

I. INTRODUCTION
Development of parallel programs, which should be

efficiently executed on heterogeneous manycore platforms, is a
hard challenge for embedded system developers. Such
platforms are targeted to the domains like ADAS,
cryptography, video surveillance, aerospace etc. Even today,
there are many heterogeneous manycore platforms on the
market from NVidia [1], Qualcomm [2], Imagination [3],
AllWinner [4], Samsung [5], Mediatek [6] and other vendors.
Tomorrow most of embedded systems will be heterogeneous
manycores.

Computer vision experts, involved in many of the
aforementioned application domains, most frequently require
performance for their tasks, so effective use of platform
resources is crucial for the success. Responding to the industry
demand, Khronos Group developed the OpenVX standard.
OpenVX [7] is a low-level programming framework for
efficient access to computer vision hardware acceleration with
both functional and performance portability. OpenVX was
designed for diverse hardware platforms, providing a computer
vision framework that efficiently addresses current and
future hardware architectures with minimal impact on
applications.

Our task was to make it possible for developers of computer
vision applications to gain all the benefits provided by
OpenVX. We successfully added support of OpenVX (spec.
1.0.1) in a VIPE IDE [8]. To the best of our knowledge, this is
the first visual development interface for the OpenVX
programming.

II. STATE OF THE ART
OpenVX is intended to increase performance and reduce

power consumption of machine vision applications. It is
focused on embedded systems with real-time use cases such as
face, body and gesture tracking, video surveillance, advanced
driver assistance systems (ADAS), object and scene
reconstruction, augmented reality, visual inspection etc.

The using of OpenVX standard functions is a way to ensure
functional portability of the developed software to all hardware
platforms that support OpenVX.

Since the OpenVX API is based on opaque data types,
client-code need not be recompiled, when used with various
OpenVX implementations. That is because such machine-
specific details as memory alignment, byte packing etc. are
hidden inside the vendor library, which is linked to the main
program.

OpenVX uses a graph-based execution model [7] and
incorporates data and task-level parallelism. This model allows
OpenVX to solve a number of issues relevant to programs
parallelization.

The graph program representation (Fig. 1) is crucial to
OpenVX efficiency. Developers describe a graph of image
processing operations using nodes (functions). Graph nodes
could target any hardware computational unit. The graph model
enables OpenVX implementations to optimize for power and
performance. The host processor can set up a graph, which later
can be executed almost autonomously [8]. Several nodes may
be fused by the implementation to eliminate memory transfers
[9]. Image processing can be tiled to fit data into a local
scratchpad memory or cache. Host interaction during frame-
rate graph execution can be minimized.

Fig. 1. An OpenVX graph [10]

It should be noted that the use of a visual graph notation for
a software development gradually broadens. From our
standpoint, there are mainly two tasks, which a visual graph
notation is supposed to resolve.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Firstly, nowadays developer teams create complex
computing embedded systems [11-14]. Teams often include
many experts from various domains. For an efficient problem
solving such teams desperately need a common language for
their project. According to the researches, a visual graph
notation is a natural representation of an operations sequence
[15]. Each member of a developer team explicitly or implicitly
uses some kind of a graphical flow chart for his projects. It is
better to have a single "big picture" of a whole project, to
which all the members have a simultaneous access.

Secondly, developers face extremely complex and
contradictory requirements; for example, they need to produce
a high-quality embedded solution for some task within a tight
time frame. Meanwhile, the volume of code vastly increases.
When companies describe existing situation they compare it to
the shift from writing programs solely in an assembly language
to writing them on a high-level language. It is more
comprehensible and productive and let teams cope with large
projects. Modern projects are so huge and sophisticated that the
high-level text-based language fall into a state of an assembler.
It is not a coincidence that source-to-source compilers are used
there.

The following tool suits already use visual graph notation
for the computer vision domain:

Adaptive Vision Studio [16] (graphical environment for
development of data-flow based software for industrial
computer vision);

Intel Flow Graph Designer [17] (visualization tool that
supports the analysis and design of parallel
applications);

Simulink [18] (graphical programming environment for
modeling, simulating and analyzing multi-domain
dynamic systems).

 In our previous publications, we presented the visual
integrated development environment VIPE to design portable
software for embedded many-core systems. It allows creating
DSL for a particular domain at hand [19]. Similarly to
previously mentioned tools, it uses a visual graph notation for
parallel programs representation.

OpenVX seems to be a promising framework to cope with
machine vision embedded development. However, as for now,
there are some drawbacks, most of which are directly or
indirectly related to the need to describe OpenVX’s graphs in a
textual form while programming. These drawbacks will be
considered further.

III. VISUAL OPENVX IN VIPE IDE
The main goal of providing support for OpenVX in VIPE

was in making OpenVX accessible to developers with various
competence levels, e.g. for both programmers and domain
experts. The goal was achieved by highlighting advantages and
alleviating some drawbacks of the OpenVX framework.

The focus on a particular domain, portability of programs
and heterogeneous platforms support are the key advantages of
OpenVX. Nevertheless, it has some drawbacks, e.g. a

requirement to write a lot of boilerplate code to make use of
OpenVX graphs and functions and a limited set of standard
functions (although it is possible to create user-defined
functions it does not fully solve the problem). In this section,
we will show how all these issues were addressed in VIPE.

From the programmer’s perspective, the OpenVX
specification contains three core types of a framework object: a
computer vision function, an opaque data object and a graph.

A. OpenVX standard functions and data
A component model of the base VPL language includes

terminal operators aimed at data processing, data objects,
managing data, and control operators, such as loops, used for
hierarchical composition and branching. The VPL language is
so expressive that OpenVX components were integrated into a
visual component library.

The main VIPE library was extended with new basic
objects representing OpenVX functions and data objects. There
is a VIPE incarnation of the vx_kernel object – vxNode, which
is derived from the functional node. It can be called as an
instance of a vx_node or as a standalone vxu function. There is
a specific API devoted to writing templates for vxNode
instances that differs from the API for the standard VPL
functional node. Ports and custom parameters of such a node
correspond to function parameters in a vx_kernel.

The library of OpenVX standard functions was integrated
into VIPE as a domain-specific component library with a set of
vxNode-based components (Fig. 2). Additionally, it contains
such miscellaneous functions like “Read image/Write image”
to access files, which are part of the auxiliary debug kernel
library.

Fig. 2. The library of OpenVX functions in VIPE

Templates for such nodes have parameters for vx_node as
well as for vxu form, because they can be different (Fig. 3).

OpenVX standard opaque data objects were integrated into
VIPE as a domain-specific library (the domain-specific library
interface is flexible enough) with a set of vxData-based
components (Fig. 4). These components correspond to
OpenVX data objects: vx_image, vx_array, vx_pyramid
etc.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 442 --

Fig. 3. The OpenVX function template for the Canny edge detector kernel

Fig. 4. The OpenVX data library in VIPE

Scalar data objects are generated automatically from the
VPL links that connect vxNode operators with vxData ones or
with other VPL objects (terminal nodes, constants, etc.). In case
there is a description of a scalar parameter in a vxNode
template, when the corresponding port receives data it will be
interpreted as a scalar data object (Fig. 5).

Fig. 5. An example of a declaration and initialization of scalar data in
generated code

A type of a scalar parameter will be either automatically set
to a native one (vx_int, etc.) or will be wrapped up in a
vx_scalar, the choice of a strategy depends on the type of the
port parameter in the corresponding vxNode.

B. OpenVX graphs
The OpenVX model of computation is based on graphs.

According to the specification, “graphs are composed of one or
more nodes… and are linked together via data dependencies…”
with some rules and limitations. Generally, it is very close to a
classical Data-Flow model [20]. Asynchronous growing
processes (AGP) model of computation [21] is the formal base

of the VPL language. It is sufficiently rich to include the
OpenVX model of computation as a special case.

To define OpenVX graphs in VPL language the vxGraph
node was added, which is derived from the standard VPL
Complex node. It is used to create an additional level of
hierarchy, containing an OpenVX subgraph, and to put some
constraints on a sub-scheme according to OpenVX graph
requirements. The vxGraph body may contain only vxNode and
vxData objects with some minor VPL objects (for example,
constants) that can be transparently converted to appropriate
OpenVX objects.

vxGraph can be internally interpreted both as an OpenVX
graph with vx_node instances or as a set of distinct vxu nodes.
This decision could be made either by a developer or
automatically.

It should be noted that OpenVX objects could also be used
outside of the vxGraph. In this case, they will operate as an
ordinary terminal operator (in vxu mode) of a VPL program for
data processing without the use of an OpenVX graph.

C. OpenVX in the IDE
An example of a visual OpenVX program (edge detection

using the Canny Edge Detector function), which is open in
VIPE, is presented on Fig. 6.

Fig. 6. The visual OpenVX program for edge detection in VIPE

The visual OpenVX library (Fig. 6,) is available in VIPE
just like other DSL libraries. The graph shown here (Fig. 6,)
contains only library objects. The program includes following
components: the Canny Edge Detector operator from the base
OpenVX standard, the “Read image” and “Write image”
operators from the OpenVX debug extension, the source and
final image containers, the threshold for the Canny hysteresis
parameter, and the VPL constant for the Canny Sobel size
parameter. The Canny normalization parameter is defined
directly as an operator property. The threshold can also be
configured directly in the object properties tab
(Fig. 6,).

A brief memo is attached to every library operator, it
contains a reference to the standard, a description of inputs and
outputs (Fig. 6,) specifying their types, possible values, etc.
There is no need for a developer to remember all the details of
the OpenVX standard: all the necessary information is already
presented in that description.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 443 --

All the intricacies are handled automatically during
translation to an appropriate OpenVX code according to
standard rules: with all type conversions involved,
“SetAttribute”-s, virtual vs. real images, etc., while the visual
OpenVX graph stays easy to grasp.

Visual OpenVX graphs can be easily modified by adding
more processing steps (Fig. 7), parameters and other attributes,
or by reconfiguration of links.

D. Alleviation of OpenVX drawbacks
As it was mentioned earlier, the OpenVX standard has

some drawbacks that significantly raise the cost of its usage in
programs.

Fig. 7. The visual OpenVX program for edge detection (a modified version)

One of the main drawbacks is a requirement to write a lot of
boilerplate code. This is the first thing that various OpenVX
implementations try to conceal. For example, AMDOVX uses
a scripting language [22], PythonOpenVX wraps it inside
Python functions [23], etc. VIPE shields a developer from such
a “code bloat” using code generation. It becomes particularly
valuable when working with OpenVX. An illustration of what a
developer is spared from even for a simple one-function
example presented earlier (Fig. 6) is shown below.

The first block of code is a declaration of auxiliary
variables and creation of base objects (Fig. 8): status, context,
graph, loading of additional kernel sets (vxLoadKernels),
graph execution and release of everything.

Fig. 8. The first code snippet: working with graph

Graph creation is the second block of code. It includes:

declaration and initialization of variables, creation of
OpenVX data objects, setting their parameters (Fig. 9);

Fig. 9. The second code snippet: graph creation (variables and data objects)

nodes creation and linking (Fig. 10);

Fig. 10. The second code snipped (continued): graph creation (nodes creation
and linking)

nodes and graph verification with result checking and
error reporting (Fig. 11);

Fig. 11. The second code snipped (continued): graph creation (verification)

It is worth mentioning that all the generated definitions of
data objects are correct, they are real or virtual according to
their location in a graph, so a developer does not need to ensure
its correctness.

When coding, a developer has to make an effort each time
he wants to intermix OpenVX with other technologies or
libraries. VIPE provides seamless integration of OpenVX
graphs into programs built using other libraries or user-defined
functions (Fig. 12). The only thing required in that case is
adding some conversion operators: from some “foreign” to the
OpenVX data object format and vice versa. This feature allows
compensating a lack of standard functions providing easy
access to other libraries.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 444 --

Fig. 12. Integration of OpenVX graphs into a VPL program

According to the OpenVX standard guideline [7], a graph
should be created, verified after creation and each time any
structural changes happen and then executed multiple times
(Fig. 13).

This is reasonable, since graph construction and subsequent
verification is a time-consuming process and repetitive
verification on every processing iteration leads to a significant
penalty. However, it puts a burden on a developer to conform
to this guideline.

Fig. 13. OpenVX graph lifecycle guideline [7]

Writing of real code, which often contains complex control
flow, makes it inevitable either to create a graph before any
processing as a global variable, or pass it through all the
functions as a parameter. As an additional burden, a developer
has to manage visibility of the following components: graph
input and output data objects (to feed data into and gather
results after graph execution), parameters of graph nodes for
configuration purposes, etc.

VIPE eliminates that “manual labor” generating target code.
Generated OpenVX graphs conform to the guideline and thus
are executed efficiently.

Initially, OpenVX graphs in VIPE had a plenty of ways to
use scalar data computed at a higher-level, variables, etc.
However, a graph needs to be verified in case of any change
(even parameter values of any graph node). Therefore, we put
constraints on VPL constructs when interfacing with OpenVX
graphs in VIPE due to the rule of the OpenVX standard.

IV. ENABLING ANALYSIS TOOLS FOR OPENVX
VIPE IDE includes a growing set of performance analysis

and debugging tools [24].

While adding OpenVX support into VIPE, the OpenVX
model of computation was smoothly absorbed by the AGP
model and OpenVX functions and data objects were seamlessly

integrated into the VPL language. Formally speaking, OpenVX
support was added without making any modifications to the
core components of VIPE.

This makes it possible to apply existing VIPE tools to
OpenVX programs slightly “patching” the code generator so
that the analysis results stay relevant.

The automated code profiling can now be used for OpenVX
graphs. The current version unrolls graph to a set of vxu
functions and profiles them separately, after that the visual
graph is marked with profile data. In the upcoming releases, the
profiler will use the OpenVX performance measurement
interface to increase profiling precision.

The visual profiler and the static performance analyzer did
not require any modifications and thus could be used out-of-
the-box. Application of these tools to OpenVX programs is
demonstrated in the next section.

Visual debugging is a new feature of the VIPE IDE, which
is currently being developed. It will allow debugging and
analyzing the behavior of both native VPL and OpenVX
programs in a visual manner. It will display flow of execution,
data consumption, intermediate graph data values and images
together with their “processing history” (Fig. 14).

Fig. 14. An interface of the visual debugger

V. USE CASE ILLUSTRATION
As an illustrative example for showing all the benefits of

VIPE usage for OpenVX programming, the feature tracker use-
case, developed with AMDOVX open-source implementation
[22], was selected. This program takes each pair of consecutive
frames from camera, analyzes it and mark distinctive features
on an image (Fig. 15).Since there is only a few of available
OpenVX implementations, the feature tracker in VIPE uses the
Khronos sample OpenVX implementation [25]. All the
experiments with this program were conducted on an x86
platform.

Fig. 15. Feature tracker program structure [26]

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 445 --

OpenVX is not a fully featured library as, for example,
OpenCV, and the range of tasks it can be applied to is thus
limited. In the feature tracker program, OpenVX was used to
identify features on the captured image and calculate its motion
between the two consecutive frames (Fig. 16).

Fig. 16. An OpenVX subgraph for the feature tracker program

The CImg library [27] was used to capture images from a
camera and to display features on the screen, the program also
uses some auxiliary library functions (Fig. 17).

Fig. 17. CImg and its auxiliary functions used in the feature tracker program

With the standard conforming generation of the vxGraph
code, it required to change simple “cimg->vx_image” operator
to the specially designed vxWriter nodes. The reason was that
there is no simple way to feed a new image to the verified
graph. The program needs to “patch” the existing input image
data without affecting the image reference.

The application shows frames captured from the camera
and draws feature markers on them as circle marks. Resulting
data (i.e. coordinates of each feature) can be used as an input to
later stages of the image processing pipeline (Fig. 18).

It is the ability of VIPE to interpret OpenVX subprograms
both as OpenVX graphs and as programs with regular OpenVX
functions that enables automated profiling and performance
analysis for programs containing OpenVX fragments.
Performance analysis shows a relatively good speedup for two
cores, a moderate speedup for three cores and no speedup for
more cores (Fig. 19).

The easiest way to extract more parallelism was to use a
multi-frame buffer and parallelize a camera frame-processing
loop synchronizing writes the output data. It does add some
latency, but this solution is quite suitable for a non-real-time
system. Such a kind of refactoring is easy to perform on the

ready-made VPL program without making any significant
modifications.

Fig. 18. Running feature tracker

Fig. 19. Results of performance analysis of the feature tracker program

Analysis of the results shows near linear time reduction
(Fig. 20).

Fig. 20. Results of performance analysis of the feature tracker (with parallel
processing of frames)

A more convenient way of raising the level of parallelism is
to apply tiling using the OpenVX tiling extension [28]. This
requires adding support for the OpenVX tiling extension to
VIPE and is a subject of future work.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 446 --

As visual profiler shows a lot of time is spent inside image
conversion functions (convert to the vx_image format and back,
see Fig. 21).

Fig. 21. Visual profiling results for the feature tracker program

This should be a subject of further optimization. Another
optimization step is to use a vxDelay object for a native way of
passing data between two graph invocations.

VI. CONCLUSION
In this paper, we introduced the visual environment for

parallel programs development with support of the OpenVX
standard – VIPE, which is based on the VPL language.

VIPE IDE allows programmers to compose OpenVX
graphs in a natural graphical form. The process is less error
prone, because all the boilerplate code, including the names of
all the input-output parameters, is generated automatically.
Thus, changing structure of a previously created graph
becomes an easy task. Moreover, domain expert could grasp
the intent of a program at a glance, thanks to a higher "signal-
to-noise ratio" of a visual representation.

Other (non-OpenVX) components could be used in the
same VPL program, say, OpenCV functions, and could be
connected with OpenVX graphs to produce valuable results.
This may be convenient when the full image processing
pipeline should be implemented.

We also demonstrated that any OpenVX subgraph is a first-
class citizen for our profiling and performance analysis tools,
thus making the IDE friendlier to a developer.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation under the contract RFMEFI57816X0214.

REFERENCES
[1] NVIDIA Whitepaper, “NVIDIA Tegra K1: A New Era in Mobile

Computing”, Web: http://www.nvidia.com/content/PDF/
tegra_white_papers/tegra-K1-whitepaper.pdf.

[2] F. Cheng, “Meet the Snapdragon 835: a next-gen processor made for
power users”, Qualcomm Snapdragon Blog, Jan. 2017. Web:
https://www.qualcomm.com/news/snapdragon/2017/01/03/meet-
snapdragon-835-next-gen-processor-made-power-users.

[3] A. Voica, “ELVEES goes full purple: MIPS, PowerVR and Ensigma
united in one vision chip”, Imagination Blog, Jun. 2015, Web:

https://www.imgtec.com/blog/elvees-goes-full-purple-mips-powervr-
and-ensigma-united-in-one-vision-chip.

[4] Allwinner Technologies official website, Series “A” Processors,
Web:
http://www.allwinnertech.com/index.php?c=product&a=index&pid=
2.

[5] Samsung official website, Samsung Exynos Processor, Web:
http://www.samsung.com/semiconductor/minisite/Exynos/w/.

[6] MediaTek official website, MediaTek helio X20/X25, Web:
http://mediatek-helio.com/x20/.

[7] Khronos Vision Working Group, “The OpenVX™ Specification
v1.1”, Web: https://www.khronos.org/registry/OpenVX/specs/1.1/
OpenVX_Specification_1_1.pdf

[8] A. Syschikov, Y. Sheynin, B. Sedov, V. Ivanova. “Domain-Specific
Programming Environment for Heterogeneous Multicore Embedded
Systems”. International Journal of Embedded and Real-Time
Communication Systems (IJERTCS), vol. 5, . 4, 2014. pp. 1-23

[9] Rainey, Erik, et al. "Addressing system-level optimization with
OpenVX graphs." Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. 2014.

[10] Khronos Group Inc. official website, OpenVX, Web:
https://www.khronos.org/openvx/.

[11] D. Ghosh, "DSL for the Uninitiated", Communications of the ACM,
vol. 54, 7, 2011, pp. 44-50.

[12] Co-Modeling of Embedded Networks Using SystemC and SDL /
V.Olenev, A.Rabin, A.Stepanov, I.Lavrovskaya, S. Balandin, M.
Gillet // International Journal of Embedded and Real-Time
Communication Systems (JERTCS) – . 2011. – #2(1) – C.
24-49.

[13] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004

[14] S. Balandin, M. Gillet, “Embedded Network in Mobile Devices”,
International Journal of Embedded and Real-Time Communication
Systems (IJERTCS), vol. 1, 1, 2010, pp 22-36.

[15] S.J. Mellor, M. Balcer, and I. Jacoboson, Executable UML: A
foundation for model-driven architectures. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[16] Adaptive Vision Studio official website, Web:
http://www.adaptive-vision.com/en/software.

[17] V. Michael, “Flow Graph Analyzer”, Intel Blog, Mar. 2014, Web:
https://software.intel.com/en-us/articles/flow-graph-designer.

[18] MathWorks official website, Simulation and Model-Based Design,
Web: https://www.mathworks.com/products/simulink.html?s_tid=
hp_products_simulink.

[19] Ivanova, Vera, et al. "Domain-specific languages for embedded
systems portable software development." Open Innovations
Association (FRUCT16), 2014 16th Conference of. IEEE, 2014

[20] Jack B Dennis, John Fosseen, John Linderman. Data Flow Schemas.
In International Symposium on Theoretical Programming, 1972.

[21] Ivanov, V., Y. Sheynin, and A. Syschikov. "Programming model for
coarse-grained distributed heterogeneous architecture." XI
International Symposium on Problems of Redundancy in Information
and Control Systems: Proceedings, SUAI. 2007.

[22] GPUOpen official website, AMD OpenVX (AMDOVX), Web:
http://gpuopen.com/compute-product/amd-openvx/.

[23] O. Heimlich, E. Ezra Tsur, “OpenVX-based Python Framework for
real-time cross platform acceleration of embedded computer vision
applications”, Frontiers in ICT, vol. 3, 2016. p. 28.

[24] A. Syschikov, B. Sedov, Y. Sheynin, “Domain-Specific
Programming Technology for Heterogeneous Manycore Platforms”
in Proc. of the 12th Central and Eastern European Software
Engineering Conf. in Russia, 2016, p. 15.

[25] Khronos Group Inc. official website, OpenVX 1.0.1 Sample Code,
Web: https://www.khronos.org/registry/OpenVX/sample/
openvx_sample_1.0.1.tar.bz2/.

[26] Khronos Vision Working Group, “OpenVX Webinar”, Web:
https://www.khronos.org/assets/uploads/developers/library/2016-
openvx-webinar/Khronos-OpenVXwebinar-June2016.pdf.

[27] CImg Library official website, Web: http://cimg.eu.
[28] Khronos Vision Working Group, “OpenVX User Kernel Tiling

Extension”, Web: https://www.khronos.org/registry/OpenVX/
extensions/vx_khr_tiling/1.0/OpenVX_Tiling_Extension_1_0.pdf.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 447 --

